Все началось еще в конце XIX века, когда ученый из Франции, Анри Пуанкаре, изучал различные части систем, которые могут быть полностью проанализированы. Как обычно, звучит это не так сложно, но именно его труды легли в основу большой задачи и стали одной из загадок, которую ученые современности называют ”Задачами тысячелетия”. Думаю вы легко согласитесь, что если подождать достаточное количество времени, то планеты в небе выстроятся в нужную вам линию. Так же будет и с частицами газа или жидкости, которые могут сколько угодно менять свое положение, но теоретически в один из моментов времени выстроятся относительно друг друга так, как они располагались в момент начала измерений. На словах все просто — рано или поздно это случится, иначе быть не может. Вот только на деле доказать это довольно сложно. Именно над этим и работал Анри Пуанкаре больше века назад. Позже его теории были доказаны, но от этого не стали менее интересными.
Теорий, гипотез, теорем и просто рассуждений очень много. Все их надо доказывать.
Кто такой Анри Пуанкаре
Жюль Анри Пуанкаре (фр. Jules Henri Poincaré) родился 29 апреля 1854 в Нанси, Франция, а умер 17 июля 1912 в Париже, Франция. Он был французским ученым, в сферу интересов которого входили самые разные науки. Среди них были: математика, механика, физика, астрономия и философия.
Кроме того, что он занимался исследованиями, Анри Пуанкаре в разные годы также был главой Парижской академии наук, членом Французской академии и ещё более 30 академий мира, в том числе иностранным членом-корреспондентом Петербургской академии наук.
Чуть ли не единогласно историки называют Анри Пуанкаре одним из величайших математиков всех времён. Его ставили в один ряд с Гильбертом, последним математиком-универсалом, учёным, способным охватить все математические результаты своего времени.
Анри Пуанкаре сделал для математики настолько много, что некотрые его труды до сих пор приносят нам пользу.
Перу Анри Пуанкаре принадлежат более 500 статей и книг. Все это говорит о нем, как о гении, который даже спустя более 100 лет после своей смерти может изменить мир будущего своими теориями, формулами, рассуждениями и прочими научными трудами.
Что такое теорема возвращения Пуанкаре
Теорема Пуанкаре о возвращении — одна из базовых теорем эргодической теории. Её суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернётся в свою начальную окрестность. На это потребуется огромное, но конечное количество времени.
С одной стороны, все логично, но есть у данной теории и немного непонятное следствие. Например, у нас есть сосуд, который разделен перегородкой на два отсека. В одном находится газ, а во втором ничего. Если убрать перегородку, то газ заполнит собой весь сосуд. Если верить теории повторения, то рано или поздно все частицы газа должны выстроиться в изначальной последовательности в половине сосуда.
Немного развязывает руки то, что время, которое на это потребуется, может быть очень большим. Но такое следствие не совсем корректно, так как изменились условия наблюдения. Зато, если говорить о том, что перегородку мы убирать не будем, объем газа не изменится и ему не придется нарушать законы физики, произвольно меняя свою плотность, и частицы газа рано или поздно действительно займут те места, в которых они были на момент начала наблюдений.
Есть такие загадки науки, которые были понятны гению, но после него никто так и не может этого доказать. Хотя, все понимают, что автор был прав.
Теория Пуанкаре в квантовой системе
Если мы говорим о том, что в традиционной системе повторения возможны и даже неизбежны, то можно предположить, что в квантовой системе, в которой возможны несколько состояний, все немного иначе. Оказывается, это не так, и труды Пуанкаре могут быть применены и к квантовым системам. Однако правила будут немного иными.
Проблема применения заключаются в том, что состояние квантовой системы, которая состоит из большого количества частиц, не может быть измерено с большой точностью, не говоря уже об идеальном измерении. Более того, можно сказать, что частицы в таких системах можно рассматривать в качестве полностью независимых объектов. Учитывая запутанности, не сложно понять, что при анализе таких систем придется столкнуться с большим количеством сложностей.
Несмотря на это, ученые не были бы учеными, если бы не попытались продемонстрировать эффект повторения Пуанкаре в том числе и в квантовых системах. Сделать это у них получилось. Вот только пока это возможно только для систем с очень небольшим числом частиц. Их состояние нужно измерить как можно точнее и обязательно учесть его.
Золотые слова!
Сказать, что сделать это сложно — ничего не сказать. Главная сложность в том, что время, которое потребуется системе для возвращения в исходное состояние, будет очень сильно возрастать даже при незначительном увеличении количества частиц. Именно поэтому некоторые ученые анализируют не систему в целом, а ее отдельные частицы. Они пытаются понять, возможно ли возвращение к первоначальному значению некоторых участков этой системы.
Для этого они изучают и анализируют поведение ультрахолодного газа. Он состоит из тысяч атомов и удерживается на месте при помощи электромагнитных полей. Описать характеристики подобного квантового газа можно несколькими величинами. Они говорят о том, насколько тесно могут быть связаны частицы с помощью эффектов квантовой механики. В обычной жизни это не так важно и может даже показаться чем-то ненужным, но в квантовой механике это имеет решающее значение.
Присоединяйтесь к нам в Telegram
В итоге, если понять, как такие величины характеризуют систему в целом, можно будет говорить о возможности квантового возвращения. Получив такие знания, можно более смело говорить о том, что мы знаем, что такое газ, какие процессы в нем происходят и даже прогнозировать последствия воздействия на него.
Квантовые системы сильно отличаются от всего, что мы можем себе представить.
В последнее время ученые смогли доказать, что квантовые состояния могут возвращаться, но некоторые поправки в концепцию повторения внести все же стоит. Не стоит пытаться измерить всю квантовую систему в целом, ведь эта задача близка к невозможности. Куда правильнее будет сосредоточиться на некоторых ее элементах, которые можно измерить и предсказать поведение системы в целом.
Если сказать более смело, то такие исследования и наработки в сфере самых разных наук приближают создание настоящего квантового компьютера, а не тех тестовых систем, которые существуют сейчас. Если дело продвинется, то нас ждет большое будущее. А сначала казалось, что это просто измерение чего-то непонятного. Не так ли?
Источник: Новости высоких технологий